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PREFACE

This paper is one of a series of IDA papers on combat

modeling , sponsored by the IDA Independent Research Program.

Mathematical attrition processes are fundamental to the com-

bat simulation models used in many studies of defense problems .

The DOAE research on attrition processes is a significant body

of work, and the comments of this paper are intended to present

and evaluate the DOAE results in the context of other mathe—

matical, computational and applied work in combat modeling .

- .
IDIC

~ 
U~*iI t O~~C~~
ju$ilfID

~~
BDD ...—..—.. .

• I, 
I II$T1IflTIOD/IV*ILø~~U ~ .U

LJ~R
i- li

2

A

~~• ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ---•--~ - -•- -•-- - •• 
— - •



F i~:i~ ~T~ T~ TiiiiiiTI~~~~~
~~~~~~~~~~~~ ~~~~~~

H

CONTENTS

1. INTRODUCTION 1

2. REVIEW OF “A BIVARIATE PROBABILITY DISTRIBUTION”    3

3. REVIEW OF “THE MOMENTS OF THE DISTRIBUTION OF
BATTLE STATES” 11

14. REVIEW OF “APPROXIMATE MOMENTS OF THE DISTRIBUTION
OF STATES OF A SIMPLE HETEROGENEOUS BATTLE” 19

• 5. REVIEW OF “STOCHASTIC ‘LINEAR LAW ’ BATTLES” 25

6. REVIEW OF “HOMOGENEOUS BATTLES WITH GENERAL
ATTRITION FUNCTIONS” 29

7. REVIEW OF “TIME DISTRIBUTION OF THE DURATION
OF THE BATTLE” 35

• 8. REVIEW OF “MOMENTS OF THE DISTRIBUTION OF STATES
FOR A BATTLE WITH GENERAL ATTRITION FUNCTIONS” .    L15

:. 9. CONCLUSIONS 149

REFERENCES 51

2

~1

V

_ _ _    
_ _ _ _

~~~IIL..& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~•_ 
~~ •~~~~=••-~~ 

_
~~•~~~~~~~~~~~~~~

•
~~ 

- _______ — - ••



- - ~~~~~~‘ ~~~~~~~ ‘ .  - ~~~~—~~~~~~~~ —~~- - - -- -  - - -~~~~~~~-~~--------~-—- -- - --•- -~~-— —-——-~---- -~~—- —~~~• • •--

-
~~~: 

- -
~~~~~~~~~~~

- • -~~ 
- - • • • .  -- ~

—-•• - - -

- 
• • 

. ,VO7 --~‘~~~ CeI~V~ ~~~~~~s7~~~~N#~~~~,r

1 . INTRODUCT ION

This paper is a review and summary of the following memo-
randa prepared by the Defence Operational Analysis Establishment

(DOAE ) of the UK:

(1) The Mathematics of Battle I: A Bivarlate Probability
Distribution , by T.G. Weale;

(2 )  The Mathemat ics of Battle II: The Moment s of the
Distribution of Battle States, by T.G. Weale;

(3)  The Mathematics of Battle III: Approximate Moments
of the Distribut ion of St ates of a Simple Hetero-
geneous Battle , by N. Jennings;

(14) The Mathematics of Battle IV: Stochastic “Linear
Law” Battles, by N. Jennings;

(5) The Mathematics of Battle~V: - Homogeneous Batt les
with General Attr it ion Funct ions , by T.G. Weale;

(6)  The Mat hemat ics of Battle VI : The Distribut ion of
the Duration of Battle, by T.G. Weale;

( 7 )  The Mat hemat ics of Batt le VII: Moment s of the Dis-
tr ibut ion of States for a Battle with General
Attr it ion Funct ion s , by T.G. Weale and E. Peryer.

These papers are hereafter cited as references [13], [lii], [5],
[6], [15], [16], and [17], respectively.

Common to all seven papers is an attempt to deal on a
computational basis with certain stochastic attrition processes

of the sort discussed in [10]. Not all processes discussed in

the DOAE memoranda are mentioned explicitly in [10]; indeed some

of the work in [15, 16, 17], wherein essent ially arbitrary
attrit ion funct ions are oermit ted , is not physically justified .
There is no doubt that Markov processes exist with the genera-

tors indicated (cf. Section 6 for details); whether such
processes correspond to physically plausible (or even1
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physically definable) sets of assumptions Is uncertain . Further

remarks concerning this point , which Is of considerable impor-

tance, may be found in Sections 6 and 9; cf. also [10].

The emphasis In this review Is on assumptions underlying
the attrition processes discussed , on mathematical computations

and approximations presented in the papers , and on probabilis-

tic derivations and interpretations of certain results that have

been derived in the DOAE papers using methods from the field of

different equations. In particular , we have not reviewed care—

fully the computer programs Included in the papers, nor have we
analyzed either sample outputs included in the papers or (except

in preparation of the related papers [8] and [9]) a large number
of additional outputs generously provided to us by DOAE . The

• few analyses performed have shown DOAE results to be consistent

with those the present author reported in [8] and [9].

We are aware that the main purpose of the DOAE work was to

produce computer programs with which numerical conclusions could

be obtained, and that much of our criticism is directed at other
aspects of the work. Even so, it is useful to have available a

careful discussion of the foundations of the processes under

analysis, which is what we have attempted to provide.

We wish, at the beginning of this review, to commend the
authors of all seven DOAE papers for uniformly high technical
and expository qualities of ‘their work. The papers were a

pleasure to read.

Throughout this paper our notat ion and terminology
concerning Markov attrition processes are those of [10].

2
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2. REVIEW OF “A BIVARIATE PROBABILITY DISTRIBUTION”

This paper reports effor t s to compute and approx imat e the
transition function of a stochastic attrition process that is

analogous to the homogeneous Lanchester square differential

equations of combat . That is, the author deals with Homogene-

ous Process 1 of [lu, p. 17], which has independent engagement

initiation and single kills. Referring to [10], we note that
this Markov attrition process , which is denoted by ( ( B t , Rt ) ) t>o,

• has infinitesimal generator A given by

A ( ( i,j),(i,j—1)) = 1C
B

( 1) A ( ( i,j),(i ,j) )  = — ( icB+icR)
A ( ( i,j),(i—l ,j) )  = iC R

where C B2 C
R 
are positive constants, jump function X given by

(2) X (i,j) = lCD + iC R

• and transition matrix Q of the embedded Markov chain given by

Q((i,j) , ( I ,j-l)) = 
iC

B
+ I

• 
j c

Q ( ( i,j),(i—1 ,j) )  = Ic + iC RB

Rather than allow the combat to continue until one side
• is annihilated , the author imposes termination levels mB

for Blue and mR for Red. That is , all states of the forms
(i ,mR

) and (mB,j) are absorbing . For such states c&,expressions

( 1) ,  ( 2) ,  and ( 3 )  are not valid and one has , instead , that for

3
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eac h state 8

A( c~, 8)  = 0

= 0

Q(ct,8) = I(c~, 8) ,

where I is the ident ity  matr ix.  Observe that the state (m B , mR)
is almost surely never entered.

Let us denote by 
~~~ 

the trans it ion funct ion of th is
attrition process; cf. [10, p.10]. In [13], Weale Is concerned
mainly with Computation and approximation of the transition

funct ion that is, computation and approximation , for each
fixed t , of the Markov matrix Another interest is Computa—

t ion of the limit P~ = u r n  P~ , which obviously exists and Is
t-*co

the distribution of the terminal state of the process.

Weale begins by deriving, in a heur ist ic manner based on a
physical interpretation of the attrition coefficients CB and

CR , the forwar d equat ion for the process , name ly

(14) P~ ((i,j),(k,L ) )  = cR~
P
t((i,i),(k+l,~~

) )

+ cBkPt((i ,j),(k,
2
~~

l ) )

— (c Bk+cRR
~
)P

t((i ,j),(k,
L ) )

= Pt
A ( ( i,j),(k,t ) )

The expression (4) is valid if (k ,.~) is not an absorbing state;

for absorbing states ( k,mR ) we have

(5a)  P
~
((i ,j),(k,mR

)) = CBkP
~
((i ,i),(k,mR

4-1))

while for states of the form (mB, 2)

(5 b ) P
~
((i,j),(mB, 2~

) )  = cR RP
~
((i ,j) , ( m

B+l ,
~~

) )

That these equations are valid Is an immediate and rigorous

consequence of the probabilistic derivation appearing in [10];

cf. also the Appendix to [7], where a detailed proof is given.

14 
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The author proceeds to note that for fixed initial condi-

tions (i ,J )  there apparently exists no simple closed—form solu-

tion to the forward equations (4)—(5). To the reviewer ’s

knowledge this is still so , although we note below some steps
in this direction hinted at, but not fully identified , by Weale .

That an explicit solution to (14)—(5) is hard to obtain Is not ,

of course , a new piece of knowledge. R.N. Snow, who originally
proposed this particular model [12], was aware of the difficulty.

With (i ,j) fixed , certain of the forward equations can be
solved in closed form. For example , it Is immediate that

— C c i+c j)t

t 
, , , —

this follows from (2) and properties of continuous time Markov

processes with finite state space; cf. [1] and [10, p.11]. The

author gives a nonprobabilistic derivation from the forward

• equat ion , using differential equation methods.

• Also , the author obtains the following explicit solutions
by nonprobabilistic reasoning. For mR < 

~ ~~

/c i\1~~ —Cc i+c 2)t —c t
(6a) = 

~~~_ L ) ! ( ~~~~~) 
e B R 

(
1_e R )

while for mB < k < i ,

______
/CRi\ 

_ (c
Bk+cRJ)t/ 

_c
Bt\• (6b) P

t((i,j),(k,j) )  = 
(i_k)!(~~~) 

e ~l—e )
These equat ions , which correspond to one side ’s having suffered
no casualties , do not seem to have appeared elsewhere. Weale’s

derivation , as noted above , is based on properties of the forward
equations as differential equations , so it seems worthwhile to

sketch a probabilistic derivation . For fixed initial conditions

• (i,j) and a fixed time t

5
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(7) P ((i , j ) , ( i ,t)) = P~~ ’~~~ fIrst j—L transitions are kills of
Reds , (j—L) transition occurs

• before t , (j_L+l)5t transition
occurs after  t~

= p (i~
i)

tt irst j—~ t rans itions are kills
of Red}

x 
~~~~~~ ~time for (j—2.) transitions is

< t, time for (j—L+l) transi-

tions is > t l f ir st  (j—9.) transi-

tions are kills of Reds f

— 
.1

- 

p=2+l  
c

B
i+C

R
P

t —C c i+c j)t
1

• 
xf  (c

Bi+cRJ)e 
B R dt1

t t , (c
Bi+cR(

j_l))t
2• f  (c Bi+cR(J_l))e dt2

t—u — Cc i c R(j 2))tJ 2 (e Bi+cR(j_2))e 
B dt~

( —Cc i+cR(~
+ l ) ) t

J0 ~
(c Bi+cR(2.+1) ) e  B

_Cc
B1+c RL)(t_u ,,)I

x e ‘~ dtj &

where P~~ ’~~ is the probability law of the attrition process subject
to P~~ ’~~~{(B 0,n0)=(1,j)} = 1 and u~ = Ct

1 
+. . .+ t

n
).

6



• ~ •~~ — •~~~~~~~~~ • - •~~~~~~~~~~ •.. ~~~~~~~ —--- • • ~~~~~~~~~~~~~~~~~~~~~~~~ ~~-- ~~ --. • •

In arriving at this expression the first terms are obtained

from the transition matrix Q of the embedded Markov chain and
the integral term arises from the jump functIon A. One must

invoke the characterization given in Corollary (8.3 .11) of [1].
Tedious but straightforward calculations transform (7) to (6).

The author takes note of the further facts that for (k,L)
not an absorbing state there exists the representation

i. ,j —(c p+c a)t
( 8)  Pt

( ( i ,J),(k,L ) )  = ~ c ( ( i ,j) , ( k ,L ) , ( p ,a) ) e  B R
p=k a=R

where the c((i,j) , ( k ,t ) , ( p ,a ) )  are constant s, and that , for
mB < k < I ,

( 9 )  P
~
((i,j) , ( k ,mR ) )  = P ( ( i ,j),(k,mR ) )  +

• i j — Cc p+ c a)t
~ 

cC (i,j),Ck ,mR),(p,a)
~ 

B R
p=k cY=mR+l

with an analogous expression holding for states of the form (mB, L).
These expressions are derived from general considerations about

solutions of systems of differential equations . If the constants

appearing in these expressions were known in closed form, compu—

tional problems would be solved . Weale asserts [13, p.11] that

the constants can be calculated recursively, but does not elabo-
rate; we sketch below a possible way of performing this computation .
For ease of exposition fix Ci ,j) and cons ider (k ,L )  = ( i,j—l).
We need to calculate c (C i,j) , ( i ,j—l),(i ,j) )  and c ( ( i,j),(i,j-.1),
(i ,j—i)), assuming that (i,j—l) is not an absorbing state . Dif-

ferentiating ( 8)  and setting t = 0 yields , on the basis of the
fundamental relation A = P~ , the equat ion

A ( ( i ,j),(i,j-1))= _ (cBi+cRi)c((i,j) ,(i,j-1),(i ,j) )
(lOa )

• • _ (c
Bi+cR(j_l))c((i ,j) , ( i ,j_l),(i,j_l)) ,

7
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while setting t = 0 in (8)  gives

(lo b) c((i,j),(i,j-1),(i,j)) + cC (i ,j),(i,j-1),(i ,j-l))

= Po
( ( i ,i),CI ,j_1))

= 0 .

One may then solve (10) for c((i,j),(i,j—l),(i,j)) and

c ( ( i,j ),Ci ,j—l),(i,J—l)). More equations are necessary when

(i,j) and (k,Q.) are not adjacent states; exactly how these are

to be obtained is not clear and is a problem worthy of further

research.

• Concerning computation of the limit (and terminal) distri-

bution P the author obtains the recursion relations
,

(l la)  P
~
((i

~
j);(k,mR

) )  = 
cBk + c:(m

R
+1) P~

C (i ,j);(k,mR+ l ) )

Cu b) P.,,((i,j);(mB, R. ) )  = 
cB
(m
B
+1) + C

R~ 
P
~
(Ci ,j) ; ( m

B+l,
Z ) )  ,

which are valid for mB < k < and m~ < £ < j, where the asterisk
in the right—hand side of (11) implies that the probabilities in

quest ion are computed with  respect to terminat ion levels (m B,mR+l)
in (l la) and (mB+1,mR) in Cllb), respectively. The result in

(11) is not a closed—form solution but is certainly feasible for
numerical computations even though to compute the termination

• distribution for one set of termination levels, the terminat ion
distribut ion must f irst be computed for every set of higher

termination levels.

Two alternatives are available for performing numerical

computat ions. First , one can introduc e transforms in t he
following manner: def ine the resolvent (R

x)x>o of the trans
i-.

t ion funct ion by

= J~ 
~_Xtp~~j~ ,

8
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where matrix integration is performed componentwise. The matrix
is called the A—p otential  matrix of the transition function

• Then either directly from ( 8 ) — ( 9 )  or by virtue of a
standard Tauberian theorem [14 , p. 1421] it follows that

(12) P = lim AR
A lO A

It is known [1,2] that for each A > 0 the A—potent ial matrix RA
is given explicitly by

(13) RA 
= (AI—AY

1

and the infinitesimal generator A is known in closed form , so by
(12) for small A , AR A is a good approximation to P~,. Second ,

since all recurrent states are absorbing,

• (114) P~ lim Qfl 
,

where Q Is the transition matrix of the embedded Markov chain .

Hence large powers of Q are good approximations to Pt,, and ,

indeed , the convergence in ( 114 ) takes place geometrically fast.
One could thus compute , for example , Q2 Q14 = (Q 2xç)2 ) Q 8 ..
to quickly obta in an approx imat ion to Q~ = P5~. Here, moreover ,
the computat iona l work is less than for the met hod based on
( 13) ,  for the latter requires a time—consuming matrix inversion ,
while the method based on (114) requires relatively few matrix

multiplications. Neither of the above methods is, however,

numerically exact , whereas the method using Cli) is.

The paper also deals with numerical solution of the forward

equat ions ( 1 4 ) — C S ) ;  this is a further useful contr ibut ion and we
believe that the associated computer program has received less

attention than it deserves. However , the usual diff icult ies
of extrapolating numerical results and of extracting theoretical

9
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Insight from empirical data remain . Nonetheless these programs
seem to represent a significant contribution to qualitat ive

• 
understanding of this stochastic attrition process.
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3. REVIEW OF “THE MOMENTS OF THE DISTRIBUTION
• OF BATTLE STATES”

The principal objective of this paper [114] by T.G. Weale

is to study time—dependent behavior of moments of the stochas-

tic attrition process (CB t , Rt)) with generator A given by

A ( ( I ,j),(i,j—l)) = C
B
i

(15) A((i,j),(i,j)) = — (c
Bi+cRJ)

A ( ( I ,j),Ci—l ,j)) = CRJ ~

I.e., the same homogeneous process discussed In [13], which was

reviewed in the preceding section.

For irzltial states (I ,j), points (x ,y) E H 2 nonnegat ive
Integers r ,s, and t ime s t > 0, let

(16) M1,~~Cr ,s(x ,y);t) = E~~~i)[ (B~_x)r (R~_y)5]

i i
= ~~ P~ ((i , i ) , ( k ,L ) ) ( k _ x ) ” (&_ y ) 5

k m B R .mR

where is the transition function of the at t r i t ion process
and mB ,mR are the termination thresholds for Blue and Red ,
respectively. If the transition function were known

explicitly or a good numerical approximation were available ,
then (16) could be used directly to compute all moments desired .

In the absence of a closed—form expression for the transition

funct ion , it is useful——from both theoretical and practical
points of view——to approximate moments, to derive relations

among moment s, and to seek qualitative informat ion about

ii
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moment s by studying (16) directly . Such is the author ’s main
goal and contribution; we now proceed to describe his work in
more detail.

Assuming that (x ,y)  Is not a function of t , one may
differentiate (16) to obtain

(17) M (r,s,(x,y);t) = ~

= ~
k L

= ~ AP C ( i , j ) , C k ,L ) ) C k — x ) ” (2. — y ) 5
k &

where A is given by (15) and where the second and third equali-

ties in (17) hold by virtue of the forward equation (14 ) and the
related backward equation (cf.[1]), respectively . Direct sub-

stitution for A in either of the latter two equalities in (17)

does not lead to a tractable system of equations. Indeed , use
of APt produces a system that is not closed with respect to the

• initial conditions (i,j); i.e., solut ions for ( i,j+1) and
( i+1,j) are needed In order to obtain the solution fur (i ,j).
Use of PtA leads to a closed system that , however , appears
very difficult to solve; in particular one does not obtain

j a differential equation for M1 ~
(r ,s,Cx ,y);’). The author cir-

cumvents these obstacles by introducing the truncated moments

(18) ~!11
(r ,s,(x,y);t) = E(I

~i 
)[ (B t

_x)r (R t
_y
~~ ;{T>tI]

where T is the random time of termination of the battle , at
which either BT 

= mB and RT > mR or BT > mB 
and RT = m~ .

The author obtains the following equation (equation (12) of

[11 4 ] ) ,  which is his main theoretical result :

r
4.

12
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H
= — cB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xM11

(r ,s— a , ( x ,y) ; t )] -

— C
R 

(_1)
~~’(i[M1 

(r—p,s+1,(x,y);t)+ y~~ (r—p, s,(x,y);t)].
p=1 p

If r = 0 or s = 0 the corresponding summation (taken over an empty
index set) is zero. Except as a means of deriving relations among

moments and truncat ed moment s, (19) seems to have little applica—
• tion. From the standpoint of numerical calculations , truncated

moments are rather difficult to obtain and even then (19) involves

truncated moments of all lower orders and produces only the deriva-

tive M’. It might be better——if one ’s objective were numerical

• results——first to produce numerical approximations to the transi-

tion function and then to employ (16) directly .

This leaves the possibility that special cases of (19) may lead

to relations among the moments M and truncat ed moment s M that extend
one ’s understanding of the attrition process——at least in a qualita-

tive sense. The author, therefore , proceeds to consider several

special cases.

Taking r = 1, s = 0, x 0, y = 0 leads to the equation

(20) 
- 

~~ 
E ’ ~~~[B~ ] = - c

RE ’
~~~

[R t ;~
T>t}]

This famous equat ion , derived originally by R.N . Snow [12] states
that for small values of t the expectations of the stochastic attri-

t ion process approx imately sat isfy Lanchester ’s square—law differ-
ential model of combat , since an ana logous express ion is valid for
E
~
1’
~~~

[R
~
]. -

To our knowledge, a completely probabilistic derivation of (20)

has not been given before . The Theorem below is of interest, there—

fore , not only for its novelty, but also because it both simplifies
and extends the results obtained by Weale in [114].

13
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(21) THEOREM. Let f be a function on the state space E of the

attrition process. Then for each t

( 2 2 )  
~~

.E
~~~

’1
~~

[ f(B
~ ,Rt ) ]  = E

~~
’
~~~

[ A f( B t ,Rt); J T>tI]

where A is the Infinitesimal generator given by (15) .

PROOF. By virtue of the forward equation (14)

(2 3) ~~ E~
1’J

~~
[f( B

~
,R

~
) ]  = 

~ 
Pt((i ,j) , a ) f ( a )

= (~~- Pt ( ( 1 ,j) , ct))f(a)

= 
~ 
P
~

A ( ( i,j);c*)f(a)

= 
~ 

Pt
( ( i , J ) ; 8 ) A ( 8 , a ) f ( a )

H

= 
~ Pt ( (l ,i) ;8) ~ A ( 8 ,a)f(c&)
B a

= ~ P ( ( i , j ) ; 8 ) A f ( 8 )
B t

= E
~~

’1
~~

[A f (B
~
,R
~

) ]

But since Af (B) = 0 when B is an absorbing state,

(2 14)  
~~~~~~~~~~~~~~~~~~~~~ 

= EU~
i)[A f (B t , Rt);(T>t}]

The proof follows by combination of (23) and (214). 1]

The reason for using the right—hand side of (214) in (22),

rather than the left—hand side, is that in particular cases the

function At will have a closed—form expression for nonabsorb—

Ing states which is Invalid for absorbing states. Use of the

114
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expression in the right—hand side of (214) is permissible, but
one cannot do this on the left—hand side of (214). The examples

• below illustrate.

EXAMPLE. For f(i,j) = i one has for nonabsorbing (i , j) ,

A f ( i,j) = — icR

and (22) becomes (20). Similarly , for t ( i,j) = j ,  one has

A f ( i ,j) = — icB

and obtains the corresponding equation for 
~~ 

E
~
1’
~~

[R
~

].

EXAMPLE. For fCi ,j) = ij we have , pr ovided (i , j)  is not
absorbing,

2 2A f ( i ,j) = — C
B

1 — C
R i

and ( 22 ) become s

~~ 
E
~
”1

~~
[B

~
R
~
] = — c3E

U
~
1)[B~ ; I T>t}]

- c
~

E [ R t; J T>tI]

EXAMPLE. For f(i,j) = ~2 and (i ,j) nonabsorbing,

Af (i,j) = — 2C
R

1J + C
Ri

and one obtains the equation

~~ E ’ ~~~[B~] = — 2cR E
U
~
i)[B

tRt; ~T>tI]

+ C
R 
E
~~~

’1
~~

[R
t ; IT

>t}] .

One may then derive expressions for derivatives of variances ,
and so on.

15
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We remark—-and this observation is of some impor tance——
that C 2 2 )  is valid if T is replaced by any stopping time S such
that (B t , Rt ) = s”~s~ 

on {S < t }. S need not be defined in
terms of absolute thresholds , for example.

One can also use Theorem (21) to derive the general equa-
tion ( 19) as well as expressions for derivatives of functions

not expressible in the form f( i ,j )  = C i_ x ) ~’Cj _ y ) S . We plan to
report more fully on consequences of our Theorem in a forth-
coming paper [11].

Most of the remainder of the memorandum [114] is occupied
with computations similar to ( 19) .  Many of the author ’s results
are worked out in painstaking detail and in this respect he has
made a meaningful contribution. We know of no other reference
for many of these calculations .

In the very last part of the paper , Weale performs a simi—
lar analysis of an analogous heterogeneous attrition process.
The process cons idered is similar but not ident ical to Hetero-
geneous Process 1 of [10], with independent engagement initiation
arid single kills. If there are M weapon types on the Blue side
and N weapon types on the Red side and if the states of the

process are represented •as vectors of the form

(x ,y)  = (x 1,.. . ,xM ; y1,. . ~y~)

then the infinitesimal generator A of the associated (vector—
valued) attrition process ((Bt , Rt ) )  is given by

M
A ( ( x ,y ) , ( x ;y1,. . . ,y~—l ,... ~~~~ = 

~ 

cB(i ,i)xi

(25) A((x , y ) , ( x , y ) )  = 
i~ l j~ 1 

CO B ,j)x
i

A ((x ,y),(x 1,...,X 1— 1,... ,x~ ;y)) 
= 

~~ 
cR(j,i)yJ 

.

— i=l

16
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• 
The reader is referred to [7] and [10] for details concerning

• this process. Termination states are, not entirely reasonably,

• taken to be states (x,y) for which either

• M
(26a) ~ a~x~ < mB1=1

or

N
(26b ) 

~ 
8~Y~ 

< mRj =l

where the a~ , the 
~~~~~~~

, mB and mR are prescribed in advance. In
• 

- 

such states boundary condit ions of t he form ( 5 )  are valid , rather
than (25). Certain modifications are necessary because some of
the x1 or y

1 
may be zero without either (26a) or (26b) being satis-

fied. The author then notes the forward equation

P
~~

= P
t
A

for the transition function of this attrition process ,
states (seemingly correctly) that it cannot easily be solved in

closed form , and remarks about its general form ; cf. equations

(8) and (9) and associated comments in Section 2.

Finally,  he derives equations analogous to (19) for various
moments. Appropriately extended , Theorem ( 21 ) may more easily
yield the same results. Nonethe less , the equations presented
stand as a contribution because of their explicitness and the

care used in their derivation.

17
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4. REVIEW OF “APPROXIMATE MOMENTS OF THE DISTRIBUTION
OF STATES OF A SIMPLE HETEROGENEOUS BATTLE”

This paper [5] by N. Jennings is not of the same interest

or importance as the papers reviewed in t he two preceding sec-
tions; much of it, indeed , concerns calculation of error bounds

whose theoretical and practical value is uncertain. In addition ,

the author seems not to distinguish relatively important ideas

from essent ially uninterest ing (a lbeit invo lved and complicat ed )
computations.

• Consider the heterogeneous stochastic attrition process

with the generator A given by expression (25) in Section 3;
this process is discussed in more detail there and in [7,10].

• Instead of the unrealistic terr~ination rule embodied in (26),

the author chooses the following rule: for each I = 1, ... ,  M

there is a t hreshold m
B

( i ) for Blue weapons of type I and for
each j = 1, . ..,  N there is a threshold m~ (i) for Red weapons

• of type j. The battle terminates if B
t

( i ) < mB ( i ) for any I
or R

~
(j) < m~(j) for any j. That is, the terminat ion t ime T

• is given by

(27) T = inf{t:BtCi) = mB(i) for some i or Rt(i) = m.~( j )  for some j}

This termination rule also is subject to criticism , but seems

clearly more reasonable than that of (26).

The author begins with a heuristic derivation of the forward

equat ion

• P
~~

= P
t
A

• for this process; for a rigorous derivation from a set of care—

19
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fully stated hypotheses the reader is referred to the Appendix
of [7]. Jennings proceeds to consideration of moments of first
and second orders , namely the expectations and covarlances of
numbers of survivors given by

(28a ) MB(ct ; i ,t) = Ea[B~~( i) ]

(2 8b) MR (a ; j , t )

(28c) CB(ct ;1,i ,t )  = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(28d) C~ (ct ;j,j’,t )  =

and

4 
- 

C28 c )  CBR (a; i,j,t )  = Ea [ (B ~~(i)_E
a [B~~( i ) ] ) ( R ~~(j)_E

a[R~~(j)])] ,

where i ,i’ = 1, .. .,  M and j,j’ = 1, .. .,  N. In particular ,

C
B

(a ;i,i,t )  = Var a (Bt (i) )

and

CR(ct ;j,j,t )  = Var a (Rt (j ) )

for each i and j.

Jennings obtains differential  equations involving these
moments that resemble the Lanchester system of equations to

which the stochastic process is analogous . “Resemble ” in this
case means that the equations derived in [5] are qualitatively
of the same form as the Lanchester equations, up to an error
t erm which in some sense is small if the time t is small.

For example , it follows from Theorem (21 ) that for the
function f given by f(a) = x~ ,

20
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(29) ~~~~~~
- M~(a;i,t) = ~~~~~~

. Ea[rCB t , Rt ) ]

= Ea[Af(Bt,Rt);{T>tJ]

r N 1
= Ea l_  

~ 
CR(j,i)Rt

(j);{T>t}
L

I N  1
= — EaI 

~ cR(J,i)RtCJ )I
Lj = 1 J

IN
+ EaI 

~ 
CR(i,i)R

tC j);(T<t}
Lj=1

N
= — 

~~ 
cR Cj,i)MR(a ,j,t )

j=1

I N
+ EaI 

~ 
cR(j,i)Rt

(j);{T<t}
Li = 1

Similar, but more complicated , equations are valid for
variances and covariances; together - hese constitute expression
(10) of Jennings ’ paper. He gives no derivation, nor is there

explicit calculation of error terms , such as appears In (29);
we will treat probabilistic derivat ion of such equations——
based on Theorem (21)——and probabilistic error estimation, in

a forthcoming paper [11].

The author of [5] seems aware that the error

= 
~~~ 

MB(ct ,i;t) — [_

~~~ 

cR(i~
i)MR(a;i~ t)]

is related to the termination probability Pa{T<~}, a relation

21
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first observed In the homogeneous case by Snow [12], but seems
not to know the precise nature of the relation, which is given
in (29). He proceeds, nonetheless, to attempt to compute
Pa{T<~ } for each t or, actually, to approximate this probability.
From a computational standpoint , approximation of these probabIl-
ities seems to us to be of limited value. Such approximations
can, at best , warn one about values of t for which that approxi-
mation

(30) Ea[B0(i)] - E
a[B~Ci)] ~ 

cR Cj,i) f Ea[Ru(j)]du

is grossly invalid . While this constitutes useful information
for very detailed combat models in which the time Increment is
small, it is precisely in such Instances that still more care-
ful error estimation Is necessary . At the other extreme, for
highly aggregated models of large scale combat , it is likely
that t will be sufficiently large that one incurs substantial
errors by use of (30), but no alternatives seem to exist . In
both cases, more accurate error estimates are required .

However, estimates of Pa{T<t} are better than no error

estimates at all, so the author deserves credit at least for
having performed some preliminary work. There appears to be

a slight circularity to his method , which consists in the

following steps:

(1) Approximate MBCct;i,t) as in (30), and perform similar

approximations of other moments defined in (28);

(2) Assume that with respect to ~a, the random vector
(Bt,Rt) is normally distributed with mean vector given by

(28a,b) and covariance matrix given by (28c—e);

(3)  Compute the mass of the joint normal distribution

specified in (2) that lies outside the set of absorbinE states

22
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(i.e., in the set of transient states in which the battle con-
tinues) and take this as an approximation to Pa{T>t}.

In truth , the author ’s approach is slightly different : he
fixes in advance an upper threshold value of Pa{T <t } and seeks
the minimal t at which the threshold is exceeded. He effects
this computation by calculating the mass of a normal distrIbu-
tion lying within an ellipsoid on which the joint normal density

is constant , finds the time—dependent constant density ellipsoid
corresponding to the threshold probability , and then calculates
the minimal time at which the ellipsoid intersects the termina-
tion set.

• Virtually all these steps involve further approximations ,

some of which appear unavoidable from a computational point of

view, at least given the author ’s objective . The circularity

alluded to above is that the assumption of a joint normal dis-
tribution for (Bt,Rt) is valid only if Pa(T<t} is already very
small , and so may not produce an accurate est imat e of the ter-
minat ion probability .  Near ly all of the paper is concerned with
computations arising in this approximation scheme ; the reader is

referred there [5] for further details.

23
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5. REVIEW OF “STOCHASTIC ‘LINEAR LAW’ BATTLES

This paper [6], also by N. Jennings , provides a treatment
similar to that accorded stochastic “square law” battles in

the paper reviewed in Section 2. The particular stochastic
• attrition process analyzed is Homogeneous Process 2 of [10],

with proportional engagement initiation and single kills. The
inf initesimal generator A is given by

A(C i,j), (i ,j-l)) = iicB

• (31) A( (i,j), (i,j)) = — ij(cB+cR)

A ( ( i,j), (i—l ,j)) = ijcR

• 

• 
where CB, cR again denote positive constants , but not with the
same dimensions as the constants appearing in Sections 2—~4.

The jump function A is given by

• A (i,j) = ijCcB+cR)

and the transition matrix Q of the embedded Markov chain is

given by

c
‘ ‘ ‘ c + c

(32) B
cR 

R

Q(( i ,j ) ,  ( i—l ,j ) )  = 
~ + ~B R

In particular , the embedded Markov chain is a spatially homo-

geneous random walk, which is computationally tractable.

Boundary conditions in the form of thresholds mB for Blue

and mR for Red are imposed.

25
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The author first presents the forward equation for the

• 
transition function of this attrition process. He then

• derives different ial  equations for moment s of the stochastic
attrition process ((B

~
,R
~
)). For example, he presents the

equation -

)

(33) ~~~~~~
. E~~ ’~~~[B~] = — cRE [BtRt]

+ mRcRE [Bt;{Rt~mR
}]

+ mBcRE [ R
t
;{Bt=m~

}]

- - c E~~ ’~~~[B R ]

+ ~~~~~~~~~~~~~~~~~~

= — CRE [B
t
Rt;{T>t}] ,

where T is the termination time of the - er~gagement . The author
provides only the first equality in (33)ç we have provided the
other two in order to show that this equation and similar equa-
tions for second moments can be obtaine~1 from Theorem (21),
since if (i ,j) is not an absorbing state and f(k,t )  = k , then

A f ( i ,j ) cRij

The author ’s equat ions appear correct (exce pt for typo-
graphical errors) and represent a useful set of facts. We

refer the reader to [6] for Jennings ’ actual resu lts.

The author demonstrates that

(3 14 ) E
~
1 ’
~~~

[c5B~ — cR R~
] = cBi — C

Ri

for all t , a relation which indicates a plausible equilibrium
property of this stochastic attrition process. No analogous

property holds, however, for the independent engagement Initi-
ation process discussed in Sections 2 and 3; cf. [11].

26
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Brief mention is made of a computer program developed to
solve the forward equation P~ = PtA numerically; when such a
solution is obtained , moments can be calculated at once. Of

course, this approach does not lead to a general understand-
ing of the process in the way that theoretical approaches may.

Nonetheless, existence of this program Is a useful contribu-

tion, and, indeed, may stimulate and support further theoretical
developments.

Finally, the author considers the distribution of the termi-

nat ion stat e (B
T,RT

). Let

q((i,j),(k,L ) )  = p (i~~ ){(~~~,~~~) = (k ,R..) }

dependence of q on the termination thresholds mB,mR exists but
is suppressed from the notation. Clearly q(., (k,L ) )  = 0 unless
k = 51

B 
or £ = mR, but not both. At this point the author ’s non—

probabilistic approach leads him to an unnecessarily complicated
derivation of this distribution. Let

C
R

P = C
B 

+ C
R

be the probability that each given casualty represent s a Blue
loss. By (32)  it is immediate that for fixed initial conditions

• (i ,j ) ,  (BT, RT ) = (k ,mR) if and only if the first (i_k+(j_m R
)_l)

casualties represent i—k losses to Blue and (i_m R
)_1 losses to

Red and the next C ((i_k)+(j_m
R

) ) 5t ) casualty is a loss to Red .
Since different casualties are Blue or Red with probabilities
p and (l—p), respectively, and are mutually independent by vir-
tue of the form of the embedded Markov chain, we see at once
that

27
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• 

• /(i—k)+(j—ni )—]\ j—m —l
(35a ) q((i,i),Ck ,m~ ) )  = I H 

J
~~i_k (1..~~) ~ (l~..p)

i—k 1

i k i_m
R)~ ( l—p ) 

,

i—k

and analogously, that

i—m j— 9,
(3~b) q ( ( i,j) , ( m ~ ,L ) )  = ( Jp 

B~ 1_p~
j—2. /

This agrees with the result obtained by the author——his
equation (142)-—but provides more understanding . A probabilistic
derivation is illuminating not only in the result obtained but
also in each step and in the overall pattern of reasoning, in a
manner that an analytical derivation is not .

Let us return now to consideration of the terminal dis-
tribution . The distributions appearing in (35) are truncated
negative binomial distributions, furt her propert ies of which
are discussed , e.g., in [3]. Having derived the form of the

terminal distribut ion , the aut hor calculates the most pro bable
numbers of survivors on each side, given that the other side has

been forced to its threshold and then considers a normal approxi—

mation to the terminal distribution , which appears to be of

limited value. In any case, ci. [3], a Poisson approx imat ion
may be more appropriate. We refer the reader to Appendix A of
[6] for details of the results Jennings obtains. Although these
results are not discussed here , we do not intend to imply t hat
they are not useful in the practical sense.
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6. REVIEW OF “HOMOGENEOUS BATTLES WITH
GENERAL ATTRITION FUNCTIONS”

This paper [15] by T.G. Weale continues the line of devel-
opment represented by the four papers reviewed in Sections 2—5
by extending some results contained in the papers reviewed in
those sections to the case of “general attrition functions,” a
particular development he pursues in [16,17]. In our opinion,

• this particular form of generalization has pitfalls and, indeed ,
can be interpreted as an attitude which we have long criticized.
Except in part icular cases such as those cons idered in [10]

• 
• that lead, for example , to the processes discussed in Sections

2—5, there need not exist a set of physical assumptions leading
to a given pair of attrition functions. Mathematical treatment
of processes not verifiably arising from physical assumptions
about individual weapons systems and their interactions may
create the (possibly) false impression that the resultant attri-
tion process is of value as a model of combat .

• The author treats a homogeneous stochastic attrition pro-
cess ((Bt,Rt

) ) t>o with infinitesimal generator A given by

A(C i,j),(i ,j-l)) =

• (36) A((I ,j),(i , j ) )  = — [
~B

(i ,i)+
~R

(i ,i)

A ( ( I ,j),(i—1,j) )  =

where and 
~R 

are arbitrary nonnegative functions on the state

space of the attrition process. In addition , termination thres-

holds mB for Blue and m~ for Red are prescr ibed in the manner of
Sections 2 and 5.

29
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That there exists a Markov process whose infinitesimal
generator is given by ( 3 6 )  is , of course, true. What is
uncertain is existence of a plausible or even definable set
of assumptions concerning physical behavior of combatants——
both individually and Interactively——that leads to an attrition
process with the generator A given by (36). For certain cases,
the author of this review has shown the existence of such sets
of assumptions; ci. [7,10]. These assumptions concern the quali-
tative and quantitative probabilistic nature of engagement
Initiation by combatants and are stated in a form in which a
potential applier of stochastic attrition processes (to corn—
puterized combat simulations, for example) can readily verify
their plausibility, or at least choose one process among several
alternatives. • .. ) 

I
Even from a mathematical standpoint , the arbitrary generator

approach is subject to criticism. Except for the restriction
that sample paths be componentwise nonincreasing and decrease
only by jumps of size one in one component , the infinitesimal
generator A given by (36)  is perfectly general. Specific corn—
putations are, therefore , likely to be impossible to perform,
as the main body of [15] confirms . Theoretical results of

sufficient specificity to be of interest are likewise difficult
to obtain. The role of (restrictive) assumptions in mathematics
is to sufficiently limit the class of objects under study that
nontrivial statements become possible . Furthermore , considera-
tion of problems that are too general denies one use of both
intuition and methods of analysis that exploit the special
structure of specific problems .

Finally,  one does not deal in practice with an “arbitrary ”

generator A but chooses some specific form. A set of physical

assumptions leading to a given form of generator contains with—

in itself the appropriate suggestions for generalization. If a

certain assumption is believed to be implausible , one can modify
it to be acceptable in physical terms and then derive——possibly

30
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not without difficulty——the generator resulting from the new

set of assumptions. On the other hand, a methodology based on
direct and arbitrary choice of the generator is inherently self—
limiting in that it admits no such potential for generalization.

For all these reasons, we believe that the research re-
ported by Weale in this paper has, in its present form, little
significant practical or mathematical implication . Therefore ,
the following description of the contents of the paper is quite

br ief .

Weale takes note of the forward equation

(37 )  P~ = P
t
A

with suitable boundary conditions , for the transition function

of the attrition process. No derivation is required , for

Markov process theory ensures the validity of the forward equa-

tion. For reasons that are obscure to us, the author of [15]

thereafter considers higher derivat ives of the transit ion func-
tion and obtains various relations involving them . It is

evident from (37) that

= P~A =  PtA
2

and that, more generally , for each n

(38) ~~n) 
=

for all t and k = 0, . ..,  n, where Is the ktl~ derivat ive
of the transition function and , by convention = The

uti l i ty of (38) in the context of stochast ic attrit ion processes
is not apparent to us, as (37) is quite suff icient to specify

uniquely. For general attrition functions further infor—

mation given by (38)  is not sufficiently specific to be of

value. In special cases, of course , a useful Taylor expansion
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of 
~~~~~ 

might be obtainable , but the expans ion follows more easily
• from the well—known propert y t hat = exp (tA).

The author includes some remarks concerning the qualitative
form of the attrition functions 

~B’~ R~ 
For example, both should

be increasing in each variable separately and (possibly) strictly
increasing in the variable representing the opposition . For
example 

~~~~~~~~ 
which corresponds to Red kills of Blue weapons

should be nondecreasing in i (which represents the Blue side) and
strictly increasing in j. The author proposes that j -‘ 

~R
(1
~
,j)

be a function with an S—shaped graph, a property not possessed by
any of the at tr i t ion funct ions so far derived from physical
assumptions (which are linear in j ) ,  but certainly plausible.

A discussion is given of the general form of the solution

to (37 ) ;  cf. Section 2 for a similar treatment of a specific
case. Even in that specific case no concrete results are ob-

tained ; in this general case nothing of interest is presented.

Weale mentions in the main text , and present s in Appendices ,

computer programs for numerical integration of the forward equa-
tion (37) together with some results obtained therefrom . The

attrition functions used in the sample program are given by

= i(c~ +c~j)

and
= j(c~ +c~ i)

where C B~ 
c~~, cR , c~ are constants .  We emphasize that to our

knowledge no set of physic9l assumptions leading to these attri—

tion functions exists. That such assumptions do exist is,

indeed , quite possible; verification of such matters is the

problem of interest and importance.

32
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Finally, the aut hor treats the term inal distr ibut ion by
• the same Tauberian methodology used in the paper reviewed in

Section 2. No specific analytical results are obtained ,

although many numerical explorat ions are poss ible.

33
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7. REVIEW OF “THE DISTRIBUTION OF THE
D U R A T I O N  OF BATTLE”

In this paper [16] T.G. Weale continues his analysis of

the homogeneous attrit ion process ( ( B t , Rt ) )
t>o introduced in

[15] (Cf. Section 6 for a review thereof): i~amely , the Markov
attrition process with infinitesimal generator A given by

A ((i,j),(i,j-1)) =

( 39 ) A ( ( i , j ) , ( i , j ) )  = — 

~~~~~~~~ 
+ 

~R
Ci ,jfl

A( (i,j),(i—l,j)) = 
~~~~~~~~ 

‘

where 
~B’ ~R 

are arbitrary , but fixed , nonnegative funct ions.
As we have observed in Section 6 , this general approach has
difficulties: for most functions C4D

B,
cp
R 

t here is no known
set of underlying physical assumptions that leads in the manner

of [7,10] to an attrit ion process with the generator A given by
(39). Moreover the general approach represented by [15,16,17]

appears unlikely to yield results of sufficient specificity to

be really useful.

Nonetheless the particular problem studied in [16] is of

some Interest——especially in physically justifiable special

cases such as the processes discussed in the DOAE papers [13],

[114], and [6] t hat are rev iewed in Sect ions 2, 3, 5, respectively.
That problem is the following : let mB and m

R 
be termination

• levels (possibly but not necessarily zero ) for the Blue and Red
sides, respectively, ~o that the combat ceases when Bt = mB ~)r
Rt 

= mR
. Let T be the duration of the battle , given by

T = inf{t: Bt 
= m

B 
or Rt = mR}
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One then wishes to comput e, characterize, or approximate, for
each initial state (i ,j) ,  the distribution of T under the proba-
bility measure ~~~~~~ i.e., to study the func tion

(1~O) F ( i ,j;t) = p (i
~~i) {T < t }

As observed in Sect ion II (ci. page 21) such probabilities are

of interest in the context of the moment equations derived in

Theorem ( 2l) in Sect ion 3 and are also , of course , of intr insic
interest as properties of the combat .

Weale ’s approach to the problem is the following: if BT
denotes the state of the process at the time of termination

• and if I > mB, ~ > mR, then

E D} = 1

where

D = {(k,m~ ) :  mB < k} U {(m B, R . ) :  m
R 

< £}

• Moreover , since each state In D Is by definition an absorbing
• state, it follows that

-4)

(141) FCi ,j;t) = P~~
1’1

~~
{B

~ 
C D }

I

= E P
~
((i,j ) , ( k ,mR ) )  + 

~~~~ 
Pt((i ,i),(mB,~~

) )
k m B+l

The expression given In (141) Is valid in general , whether the
generator A arises from explicit physical assumptions or not .
Therefore, if the transition function of the process were
known , then the funct ions F(I,j;) would be completely deter-.
mined . Un fortunately,  however , th is is not so even for t he
special cases discussed in prevIous sections.
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Weale parti t ions the termination set D int o three subset s

• consist ing of

= f(k,mR
) :  k > rnB}

D2 
= {(m B,~~): £ > I f lR}

and

D
3 

= D — (D
1 

U D
2

)

where mB ~ 
mB and 51R ~ 

mR are also prescribed in advance. States
in D1 are in Weale ’s terminology “Blue victory states ,” those
in D2 are “Red victory states,” and those in D

3 
are “draw states.”

The intention and interpretations are apparent . Clearly

p(i , i) {B c  D1} = k=
~~B

(142) p Ci ,i)f B c  D2
} =

mB-l
p Ci ,i){ Bc  D

3
}

mR-l

+ ~
• £

~
.m
R+l

= 1 — P
~
1’1

~~
{B
T 

C D
1 
uD2}

• wher~e

• P lim P• t
t +~~

,
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and evidently exists provided that CP8(i , j)  + ~R (i , j)  > 0 when—
ever I # mB and j 1’ mR 

(c f .  pp. 8— 9 above for some remarks rele-
vant to numer ical computat ion of

Weale then proceeds to consider the distr ibution of T
• conditioned on the termination state; that is, he considers

the conditional distribution functions

F
1

(i ,j;t) = p (i , j)
~~T < tJB ,~, C D1

}

F2 (i , j ; t)  = p (i ,i) {T < t~ B~ C D2 }

F3(i , j ; t )  = P~
1’1

~~{T < tIBT C D~ } .

Formally, these functions can be computed directly from (141)

and (142) using only elementary probability; for example

C k~, J 4(4 3 )  F1(i , j ; t)  = 
(j 4)P ‘~~~ {BT C D1}

i
• 

~~ P~ ( ( i ,j),(k,m~ ) )
k
~
mB

— 

I

~ Pa, C C 1 , j ) , ( k ,mR ) )
k m B

Analogous express ions , which need not be included here , ex ist
for F2Ci ,j;t) and F3

(i,j;t). From ( 14 3) it is clear that the

Fq(i~i;t) can be computed in closed form if the transition

function is known, but seem inacces sible ot herwise.

To continue our review of [16], Weale next discusses the

density functions of the distributions F(I,j;t). From (141) and

the forward equation Wr~ale derives the relation
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i I
( 1 4 1 4) ~~-F(i,j;t) = 

k~~~~~l
t R  +

i
= ‘5’ P~A ( ( i,J),Ck ,mR ) )  + Pt A ( ( i ,j ) , ( m B, L ) )

L m
R
+l

= 
~~~~ 

P
~
(Ci ,j),(k ,mR~

l ) )
~ B

(k ,mR+l)
k m B+l

i
+ 

~~~~

Analogous expressions are also given for the densities of the
• conditional distributions F1, F2, F3

. Like other relations

derived earlier in the paper these formulas give closed form

results if the transition function is known in closed

form and not much information in other cases.

One exception to the latter assertion is when the forward
equation is integrated numerically for given initial conditions
and attrition functions; this is a principal objective of the

computer programs that comprise the larger part of not only [16]
but also several of the papers reviewed in preceding sections of
this paper. In this situation the formulas (141), ( 14 2 ) ,  ( 14 3) ,
and (1414) are all applicable and yield good numerical approxi-

mations to the probabilities in questi9n. The work and results

concerning numerical computations are , as we discuss further in
Section 9, a significant contr ibut ion of at least some of t hese
DOAE papers. This method of development for all its usefulness,

however, does not yield closed —form analytical expressions by
means of which one can fully understand and describe the attri-

tion processes under study. Neither does it produce qualitative

insight s that can be extrapolated beyond the (necessarily
limited ) numbers of numerical input s t hat are actually treated ;
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of course many useful qualitative insights result nevertheless.

Finally,  Weale deals with expectations , medians , and modes
of the termination time distributions. Since , for example , for
each (i,j)

(45) E~
1’~~~[T] =f (l-F(i,j;t))dt

~~fU  (1—F(i ,j;t))dt

= u _JU
F(i,i;t)dt

for large values of u, one can use the first equality in (45)
to comput e E~

1’1~~[T] If F(I ,j ; . )  is known in closed form or can
use the approximation contained in (145) if (as is the case in
[l6])a numerical approxir 1iation to F( i , j ; . )  is available. Since

I-u

u — 
J 

F(i,j;t)dt < u,
0

in order that the approximation in ( 14 5 )  be even reasonably
accurate one must have

u >

This point is not mentioned in [16]; it is easy, however , to
est imat e E~

1’1
~~[T]. If, as t he phys ics of combat almost cer-

tainly requ ire , the attrition functions 
~B ’ R are both nonin—

creasing in each argument , then evidently

(46) E~~
’1
~~[T] < ( i

~
.m
B+

j_m
R
_l)1

~ B
(m
B+1,mR+l)+rR (m

B
+1,m fl + l ) ]

~~

The reasoning underlying (146) is the following : at most (i_m B
+ i_m R — 1) casualties can occur before termination and each
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interval between casualties is exponentially distributed with
• expectation not exceeding E~B

(n1
~~
1,mR+1) + 

~R
(m B~~

,mR+l)] .
One may then use (46) to determine a sufficiently large value
of u for use in (145). In the computer program appended to

[16] the integrat ion in (145) is performed using Simpson ’s rule,
which seems eminently reasonable.

Computation of the median and mode of the distribution of
T is also considered in [16]. Also , the author provides simi—
lar treatments of the conditional distributions F1, F2, F3

;
further details are not necessary here.

As we mentioned before , the distribution of the terminal
time T is of some interest , particularly in the context of the
differential equations discussed In Section 3; see also [11]
where we consider the problem in some detail. One approach

that may be superior to that of Weale not only for derivation

of analytical results but also for certain computational appli-

cations is the following recursive method .

( 14 7 )  PROPOSITION. For each nonabsorbing state (i,j)

t -[~ (i ,j)+q’ (i,j)]u
(148) F(i,j;t) = 

~~~~~~~~ J F(i,j—l;t—u)e B H du

0

t ~[cp (i,j)+~c (i,j)lu• + 
~R~~~’J ~~J 

F(i—l ,j;t—u)e B R du
0

PROOF . Let T1 be the f irst change of state of the attr ition
process ((Bt,Rt)) and X1 the state entered at time T1• 

By

Theorem (8.3.3) of [1],
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• 
~B~

1’1
~ 

- ‘• p(i,J){T <t,X = (i,j—l)} =• 1— CPB (i ,j ) + cc R (i ,j )

t — [p (i,j)+~’ (i ,j)]uf ~~~~~~~~~~~~~~~~ 
B R

0

t _ [CP
B

(i ,j)+ccR (i ,J)]u
= ~B~~~

,~~
’
)f e du

and, in the same way,

t _ [
~ B

(i,j)
~~ R

C i4,j)]u
P~~ ’~~~ T1<t;Xf(i—1,i)} 

= 
~ R~~~’~

1
~~f 

e du

Hence,

F(i ,j;t) = P ’
~~
’1
~~[T < t }

= E ’ [ P ~~ ’~~ {T<t1T ,Xl
}]

= E [P 1{T-<t—T1}]

=

• 
- ç

t

• 

— 

~~~ ~1) j  F( i ,j — l ; t — u ) e  du
• 0

t
F(i—l ,j;t—u)e du

0

where the third equality is by the strong Markov property;
cf. [1] or [2]. U

- • 
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To illustrate , we consider the process with

= cBi

V and
= C

RJ ~

namely the homogeneous square law process discussed in Sections
2 and 3 above. In this and other applications it is more con-
venient to use (148) in the equivalent form

i ~ Ci 1)(49) F’ ‘1~~ T>t } = ~~~~~~ f P {T>t—u}e du

~ (1 1 ) — [ i ,  (i,j)+~ (i ,j) ]u
+4PR (i~i)f  P 

— 

~ {T>t—u }e B R du

~~~~~~~~~~~ 
)+w~(i ,i )]t

+ e

For i,j < 2 we then have the following exact results:

= p Cl ,O) {T>t}

= P~
0’~~ {T>t}

= P~°’
2
~ {T>t}

= 0 ,

while
—C c +c )t

P ’1’1’{T> t } = e B R

Also ,
c —(c +c )t c — (2c +c )t

• P~
2’1~fT>t} = —~ e 

B H 
+ (l__!)e B R

C
B 

cB

~43
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and by symmetry

‘1 2~ 
c — (c +c )t c —(c +2c~ )t

‘ ‘{T>t} = e B H 
+ (l—---~.)e 

B ~
C R cR

Finally,

—C c +c )t c — (cD+2c0)t
P”~’2’{T>t} = 2e 

B R 
+ 2(—~ — 1)e ‘

~

.3
• c —(2c +CR)t

+ 2(—~~— l)e B
cR

c c _ (2c
B+2cR)t

+ [3—2(~~ + ~-~)]eR B

The remainder of [16] contains descriptions and listings
of computer programs that implement various computations de—
scribed above ; these are of significant practical value .
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8. REVIEW OF “MOMENTS OF THE DISTRIBUTION OF STATES
FOR A BATTLE WITH GENERAL ATTRITION FUNCTIONS”

This paper [17] by T.G. Weale and E. Peryer continues the

work of the first author on homogeneous battles with general
attrit ion functions that is report ed in [15] and [16], and are
reviewed in Sections 6 and 7 above, respectively. The general

comments made in those sections (in Section 6 in particular)

concerning possible lack of an underlying family of physical

assumptions remain relevant . In [17] Weale and Peryer deal
with results analogous to those obtained in [5] by Jennings
for the heterogeneous square law attrition process; namely,

differential equations for expectations of functionals of the
attrition process. Many of the comments and analyses presented

• in Section 14 of this review, in which [5] is reviewed , will

also be germane to the discussion of [17].

For the sake of completeness we once again observe that
the attrition process treated in [17] is a Markov process
((Bt,Rt))t>o with infinitesimal 

generator A given by

• A ( ( i ,j);(i,j-l)) =

AC (i ,j);(i ,j) )  = - 
~~~~~~~~~ 

+ 
~R~

1’1
~~

A((i,j);(i-1,j)) = 
~~R~

1’1~ ‘ 

-

• where 
~B 

and are nonnegative but otherwise arbitrary functions

defined on the state space E = N x N of the attrition process.
The authors first take note of the forward equation for the
transition function of the process , which in open form is given 

•

for nonabsorbing states (k ,L) by

145
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(50) P~ ((i,j) , ( k ,R ) )  = PtA ( ( i ,j) , (k ,t ) )  3
=

+ PtC (i,j),(k~~
,
~~

) )
~ R 

+1,R..) ,

j
for absorbing states (k ,mR ) ,  where mR is the Red termination
level, by

(51a ) P
~
((i,J),(k,mR)) = P~

((i,j),(k,mR
+ l ) )

~ B
(k ,mR+1)

and for absorbing states (m B, L ) ,  where mB is the Blue termina-
tion level, by

(5lb) P
~
((i,i),(mB, L ) )  = P

~
((i ,j) , ( m

B+l ,
~~

) )
~ R

(m
B+1,

~~
).

It then follows t hat if f is a function on the state space
E of the attrition process ,

( 52) 
~~ 

E
~~ ’~~~fr ( B t , Rt )J = dt

~ k~~ ~~
mR 

f(k,L ) P
t
((i,i),(k,

~~
) )
~

= ~~~ f ( k ,L ) P~ (Ci ,j) , ( k ,R.))
k=mB ~~

mR

I

= 
~~~~ 

f ( k ,L ) [
~~

Ck,Q.+1)Pt((i,j),(k,2.+l))k m B+l £=m~+l

+
~ R

(k+1,
~

)P
tC(i,i),Ck+l,~

) ) ]

+ E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k~~~+1

I

+ Y’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The expression (52 )  is essentially identical to equation ( 8)  in
[17] which is the main theoretical result therein . Observe that
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the right—hand side of (52) involves no probabilities of the

forms P
t((i,j),(k,mR

) )  or P
~

CC i ,j) , ( m
B,P..)). Indeed , elementary

calculations verify that (52) is equivalent to the result that

Theorem (2l)——as suitably extended in [11] to apply to general

Markov attrition processes——would yield in this situation.

The authors then proceed to discuss the solution of (52)

for funct ions f of t he form

f ( k ,2,) = (k—i)(k—i+l) • •  (k—i+r)(Q2 —j) ... (Q~...j+~ )

In which case the expectations Involved are factorial moments.

They further assume t hat 
~B 

and 
~R 

are polynomials in t heir
argument s, but even so do not obtain specific results. The

dif f i cu l ty ,  the reviewer believes , is t hat t he aut hors ’ point

of view and method of proceeding are analytic rather than

physical and probabilistic . From an analytic standpoint there

seems to be hope of solving (52) only if the 
~B 

and are poly-
nomials, although useful approx imat ions involv ing polynomials
can certainly be made. From the physical , probabilistic stand—
point one should attempt to solve ( 52)  only for a t t r i t ion
func t ions  arising from wel l—defined physical  hypotheses , in
which case the particular probabilistic structure of the process

at hand may aid in obtaining a solution.

Appendices to the paper describe computer programs designed

to approximate the solution of (52). There is no doubt that one

can solve (52)  numerically for essentially any attrition func-
tions that can be programmed into a computer , alt hough for
irregular funct ions the approximation may not be good . For
attrition functions verifiably arising from physically definable

and plausible assumptions , these computer programs const itu te  an
important analytical and descriptive tool.
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9. CONCLUSIONS

The first four papers presented here represent varying but

substant ive cont ribut ions to the theory of stochast ic attrit ion
processes. To the taste of the reviewer these contributions

are lessened and obscured by the aut hors ’ excessive reliance on

analytic approaches since , as we have several places demonstrated,
direct probabilistic approac hes yield not only more illuminating

- 

4 argument s but also , at least in some cases , more complete or
• specific results. The computer programs associated with these
• papers constitute a contribution whose current value, in view of
• our lack of ability to deal with the processes on a reasonable

closed—form basis, is certainly understated by the scant atten—
• 

• 

tion devoted to them in this review. In a few places lengthy

and unenlightening computations interrupt the development of

worthwhile ideas, but in general the papers are of high techni-
cal and expository quality, for which their respective authors

are to be commended .

On the other hand we believe that the last three papers

dealing with battles with general attrition functions make little

contribution in the mathematical sense. Since our criticisms are

rather strongly worded , let us once more attempt to be specific

about our grounds for criticism . The first of these is philo-

sophical but has important practical implications; we strongly

believe that one should not deal with attrition processes that

cannot be justified in terms of physical assumptions.

But our criticisms are also on mathematical grounds: the
great degree of generality involved prohibits the authors ’
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obtaining results that are sufficiently specific to be of mathe—
matical interest even without regard to possible physical interest
or applicability.

Of much greater importance and in much greater need, ir our
• opinion , is work aimed at developing physical assumptions that

imply forms of attrition functions other than those previously
(in [10], e.g.) justified. Better yet , one should strive first

to develop plausible sets of physical assumptions and then to

derive from these attrition processes that are tractable in terms

of applicat ions to combat models.
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